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I. Introduction
Numerical modeling is a critical method for understanding ecosystem processes. However, current 
approaches are typically not informed by microbial diversity data due to its high dimensionality. This 
creates a discrepancy between the observed and modeled biological complexity that over-simplifies 
the dynamics and function of the microbial communities in marine ecosystems. Here we describe a 
strategy for incorporation of microbial community structure data in the Regional Test-bed Model, a 
1-D data assimilative ecosystem model with parameters optimized for the pelagic western Antarctic 
Peninsula (WAP) near Palmer Station. 
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V. Conclusion
By reducing the dimensionality of microbial diversity data to enable a correlation between community structure and 
function we are able to better incorporate microbial dynamics into predictive models. Ultimately, we expect this 
approach to improve the fidelity of traits-based ecosystem models, leading to a better understanding of complex 
ecosystem processes.

III. Palmer Regional Test-bed Model (Kim et al. in preparation)
1-Dimensional data assimilative marine ecosystem model which utilizes a variational adjoint scheme 
(Lawson et al. 1995) to optimize biological model parameters. Built from existing regional test-bed 
models from other long term time series (Luo et al. 2010, Friedrichs et al. 2006). 

IV. Unifying trait-based microbial community segmentation and numerical modeling

Provides realistic initial conditions and a useful “check” against 
parameter optimization with data assimilation.

4th Workshop on Trait-Based Approaches to Ocean Life (2019)

II. Segmentation of Microbial Community Structure
Bowman et al. (2017) introduced a technique to “segment” the microbial community into functionally 
coherent units (“modes”) that can be described by a single categorical variable. This categorical 
variable reflects the key genetic traits of the microbial community. An analysis of 16S rRNA gene data 
from a 5-year time-series from the WAP was described by 8 recurrent modes in the bacterial 
community. Each point in the time series is associated with a specific mode based on microbial 
community relative abundance. Estimates of genome parameters estimated for each mode showed 
logical temporal trends in 16S rRNA gene copy number, genome size, and GC content. From these 
genetic traits we can make reasonable estimates of physiology (e.g., respiration, bacterial growth 
efficiency, cell size). 
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Using a model hind-cast of the time series, we can compare data assimilation parameter estimates with estimates from observed mode.
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Model components (Luo et al. 2010)

1.) Forward Model - driven by initial 
boundary conditions and physical forcings. 

2.) Cost Function - assesses misfits between 
assimilated observations and forward model 
results

3.) Adjoint Model - computes gradient of cost 
function with respect to model parameters

4.) Optimization - determines direction and 
optimal step size that parameters need to be 
modified to decrease cost function

● Maximum BA growth rate
● BA active respiration rate vs. 

Production
● Bacteria extra semi labile DOC 

excretion rate
● BA inorganic nutrients regeneration 

rate
● BA refractory DOC production rate
● BA selection strength on SDOM
● BA basal respiration rate - min/max
● BA mortality rate
● Half-saturation density of BA for 

grazing

Each community mode has its 
own functional genetic traits from 
which we can make reasonable 
estimates of model parameters    6

1

2

3

4

5

7

Ex: Physiology Mode 2 Mode 6 

BA growth 
efficiency

0.06 0.32

BA active 
respiration

5 
mmol/m3d

10 
mmol/m3d

BA carbon 
biomass

0.74 
mmol/m3

1.20
 mmol/m3

BA
Mode X

Photosynthetically 
active radiation (Wm-2)

Mixed-layer 
depth (m)

Sea-ice 
concentration (%)

Water-column 
temperatures (ºC)

Vertical eddy 
diffusivity (m2s-1) 

Model Parameters Model Fields

Cost Function (J)
Optimization 

(sensitivity of J to 
parameters) Adjoint 

Model 

Forward 
Model

 Assimilate 
observational 

data

+ Updated 
parameters

If 𝞓J < 𝞮 
stop

+ Initial conditions
+ Initial parameter estimates

S-PHYL-PHY

S-ZOO

L-ZOO

HL

DET

Model structure adapted from Kim et al. in preparation

Components run iteratively to adjust model 
parameters until preset convergence 

criteria (𝞮) are met. 
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