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Observation and Inferences

• Microbial communities can be used as an indicator for successful mitigation of biosouring.mitigation of biofilms.

• Random forest models can be used for prediction of biosouring and mitigation phases, sulfide concentrations, and

the source of microbial community.

• Predicted pathway abundances can be used as an alternative and generalized training set for predicting phases and

H2S concentrations.

• These models can be modified and developed as a valuable tool for predicting key biogeochemical processes in

fields and open environments

• This study received funding from BP Biosciences Center.

• Lab members of Bowman Lab

Abstract Experimental setups

Sessile/effluent prediction

Biogenic reservoir souring is a phenomenon in which H2S is generated in oil reservoirs by sulfate-

reducing prokaryotes (SRP). This incurs significant additional operational risk, and associated cost to

manage safe production from such reservoirs. As a barrier against reservoir souring, nitrate salts are

applied with the aim of limiting SRP activity by promoting nitrate-reducing prokaryotes (NRP),

which are able to outcompete SRP for available nutrients. Here we describe results of a long-term

(148 days) ex situ experiment to assess and predict the microbial community shifts associated with

biosouring and mitigation, and impact on H2S generation. Anaerobic sand-filled up-flow bioreactors

were used to mimic the overall processes of biosouring, followed by mitigation (via nitrate

treatment) and rebound (resumption of sulfide generation when nitrate amendment was stopped).

Bacterial populations from 44 time-points covering 57 sessile samples and 674 planktonic samples

were analyzed using deep amplicon sequencing of the V4 region of the 16S rRNA gene to assess

community structure and its contribution to biosouring and response to nitrate addition. Random

forest models were successfully applied to predict biosouring and mitigation phases based on

microbial community structure with high accuracies (> 90 %). Regression-based random forest

models were used to predict H2S concentrations based on taxa abundance, cell abundances, and

metabolic profiles, and high prediction accuracies were achieved for all the sets of predictor

variables (R2 > 0.75). A random forest algorithm was further successfully applied to differentiate

effluent and sessile microbial communities (accuracy = 100 %). The results from this study suggest

that microbial community structure can be a reliable indicator for the detection of phases, H2S

concentration, and source of the microbial communities during operations of an oil field aquifer.

A 148-day experiment covering 20 columns (10 treated columns and 10 non-treated columns) was conducted to observe 

the microbial community shifts across different phases of oil biosouring and mitigation. Here treated columns refer to 

columns where nitrate salts were added to suppress sulfidogenesis.
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