Microbial community structure as a reliable predictor for oil souring
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Biogenic reservoir souring is a phenomenon in which H,S is generated in oil reservoirs by sulfate- /m
reducing prokaryotes (SRP). This incurs significant additional operational risk, and associated cost to SRL S 8 S8 B8 8 & S5 ég g §-\‘° $$ §~°° ;’ @r\‘? Ind ’ bles _ : ind q ables:
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applied with the aim of limiting SRP activity by promoting nitrate-reducing prokaryotes (NRP), 1 HE B 1 e (for validation da?aset) q Solu 661‘: un T’r(]jcet'o Lénltquetsequences (for validation datapset) y
which are able to outcompete SRP for available nutrients. Here we describe results of a long-term al @l | 3| 3| | AN NERE (for validation dataset)
(148 days) ex situ experiment to assess and predict the microbial community shifts associated with 1 1 ¢ 3 3 + 1 1 T 1
biosouring and m!tlgatlon’ and impact on H,S gener_atlon._Anaeroblc Sand-ﬂ”e(.j _up-flow bl_orea_ctors A 148-day experiment covering 20 columns (10 treated columns and 10 non-treated columns) was conducted to observe Number of independent variables - 12713 ~ Number of independent variables - 10887  Number of independent variables - 809
were used to mimic the overall processes of biosouring, followed by mitigation (via nitrate the microbial community shifts across different phases of oil biosouring and mitigation. Here treated columns refer to
treatment) and rebound (resumption of sulfide generation when nitrate amendment was stopped). columns where nitrate salts were added to suppress sulfidogenesis. Actual M R S ™ M R s  T™M M R S TM
Bacterial populations from 44 time-points covering 57 sessile samples and 674 planktonic samples
were analyzed using deep amplicon sequencing of the V4 region of the 16S rRNA gene to assess M 45 2 0 0 M 34 2 0 0 M 46 1 1
community structure and its contribution to biosouring and response to nitrate addition. Random | | Transion o Mitigation Rebound % R 0 15 0 0 R 0 7 0 0 R 0 14 0 0
forest models were successfully applied to predict biosouring and mitigation phases based on Sulfidogenesis (S) ™ (M) (R) =
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microbial community structure with high accuracies (> 90 %). Regression-based random forest &’ S 0 0 131 11 S 1 0 99 J
models were used to predict H,S concentrations based on taxa abundance, cell abundances, and T™M 1 0 0 0 ™ 0 0 0 0 ™ 0 0 1 0
metabolic profiles, and high prediction accuracies were achieved for all the sets of predictor " NO addition started | [ Stoppage of NO; addition |

variables (R? > 0.75). A random forest algorithm was further successfully applied to differentiate
effluent and sessile microbial communities (accuracy = 100 %). The results from this study suggest
that microbial community structure can be a reliable indicator for the detection of phases, H,S
concentration, and source of the microbial communities during operations of an oil field aquifer.
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compounds » Microbial communities can be used as an indicator for successful mitigation of biosouring.
compounds » Random forest models can be used for prediction of biosouring and mitigation phases, sulfide concentrations, and
Acknowledgement the source of microbial community.
SRPs- sulfate-reducing prokaryotes * Predicted pathway abundances can be used as an alternative and generalized training set for predicting phases and
hNRB- heterotrophic nitrate-reducing bacteria _ _ _ . H.S concentrations
_ _ nitrate- i _oxidizi i * This study received funding from BP Biosciences Center. 2 | .. .. . . .
NR-SOBs- nitrate-reducing sulfur-oxidizing bacteria . Labm err>1/b ors of Bowm angLab » These models can be modified and developed as a valuable tool for predicting key biogeochemical processes in
fields and open environments




